101. Standard electrode potential for $$\frac{{S{n^{4 + }}}}{{S{n^{2 + }}}}$$  couple is $$ + 0.15\,V$$  and that for the $$\frac{{C{r^{3 + }}}}{{Cr}}$$  couple is $$ - 0.74.$$  These two couples in their standard state are connected to make a cell. The cell potential will be

A. $$ + 0.89\,V$$
B. $$ + 0.18\,V$$
C. $$ + 1.83\,V$$
D. $$ + 1.199\,V$$
Answer :   $$ + 0.89\,V$$
Discuss Question

102. Same amount of electric current is passed through the solutions of $$AgN{O_3}$$  and $$HCl.$$  If $$1.08\,g$$  of silver is obtained from $$AgN{O_3}$$  solution, the amount of hydrogen liberated at $$STP$$  will be

A. 1.008 $$g$$
B. 11.2 $$g$$
C. 0.01 $$g$$
D. 1.1 $$g$$
Answer :   0.01 $$g$$
Discuss Question

103. A smuggler could not carry gold by depositing iron on the gold surface since

A. gold is denser
B. iron rusts
C. gold has higher reduction potential than iron
D. gold has lower reduction potential than iron
Answer :   gold has higher reduction potential than iron
Discuss Question

104. Limiting molar conductivity of $$N{H_4}OH$$  $$\left( {{\text{i}}{\text{.e}}{\text{.}}\,\,{{\mathop \Lambda \limits^o }_{m\,\,\left( {N{H_4}OH} \right)}}} \right)$$    is equal to

A. \[{{\overset{\circ }{\mathop{\Lambda }}\,}_{m\,\,\left( N{{H}_{4}}Cl \right)}}+{{\overset{\circ }{\mathop{\Lambda }}\,}_{m\,\,\left( NaCl \right)}}-{{\overset{\circ }{\mathop{\Lambda }}\,}_{m\,\,\left( NaOH \right)}}\]
B. \[{{\overset{\circ }{\mathop{\Lambda }}\,}_{m\,\,\left( NaOH \right)}}+{{\overset{\circ }{\mathop{\Lambda }}\,}_{m\,\,\left( NaCl \right)}}-{{\overset{\circ }{\mathop{\Lambda }}\,}_{m\,\,\left( N{{H}_{4}}Cl \right)}}\]
C. \[{{\overset{\circ }{\mathop{\Lambda }}\,}_{m\,\,\left( N{{H}_{4}}OH \right)}}+{{\overset{\circ }{\mathop{\Lambda }}\,}_{m\,\,\left( N{{H}_{4}}Cl \right)}}-{{\overset{\circ }{\mathop{\Lambda }}\,}_{m\,\,\left( HCl \right)}}\]
D. \[{{\overset{\circ }{\mathop{\Lambda }}\,}_{m\,\,\left( N{{H}_{4}}Cl \right)}}+{{\overset{\circ }{\mathop{\Lambda }}\,}_{m\,\,\left( NaOH \right)}}-{{\overset{\circ }{\mathop{\Lambda }}\,}_{m\,\,\left( NaCl \right)}}\]
Answer :   \[{{\overset{\circ }{\mathop{\Lambda }}\,}_{m\,\,\left( N{{H}_{4}}Cl \right)}}+{{\overset{\circ }{\mathop{\Lambda }}\,}_{m\,\,\left( NaOH \right)}}-{{\overset{\circ }{\mathop{\Lambda }}\,}_{m\,\,\left( NaCl \right)}}\]
Discuss Question

105. The highest electrical conductivity of the following aqueous solutions is of

A. $$0.1 M$$  difluoroacetic acid
B. $$0.1 M$$  fluoroacetic acid
C. $$0.1 M$$  chloroacetic acid
D. $$0.1 M$$  acetic acid
Answer :   $$0.1 M$$  difluoroacetic acid
Discuss Question

106. $${\text{Given}}:E_{\frac{{C{r^{3 + }}}}{{Cr}}}^ \circ = - 0.74\,V;$$      $$E_{\frac{{MnO_4^ - }}{{M{n^{2 + }}}}}^ \circ = 1.51\,V$$
$$E_{\frac{{C{r_2}O_7^{2 - }}}{{C{r^{3 + }}}}}^ \circ = 1.33\,V;E_{\frac{{Cl}}{{C{l^ - }}}}^ \circ = 1.36\,V$$
Based on the data given above, strongest oxidising agent will be:

A. $$Cl$$
B. $${C{r^{3 + }}}$$
C. $${M{n^{2 + }}}$$
D. $$MnO_4^ - $$
Answer :   $$MnO_4^ - $$
Discuss Question

107. Standard electrode potentials are
$$\eqalign{ & \frac{{F{e^{2 + }}}}{{Fe}},\,{E^ \circ } = - 0.44\,V \cr & \frac{{F{e^{3 + }}}}{{F{e^{2 + }}}},\,{E^ \circ } = 0.77\,V \cr} $$
$$F{e^{2 + }},F{e^{3 + }}$$   and $$Fe$$  block are kept together, then

A. $$F{e^{3 + }}$$  increases
B. $$F{e^{3 + }}$$  decreases
C. $$\frac{{F{e^{2 + }}}}{{F{e^{3 + }}}}$$  remains unchanged
D. $$F{e^{2 + }}$$  decreases
Answer :   $$F{e^{3 + }}$$  decreases
Discuss Question

108. The standard e.m.f. of a cell involving one electron change is found to be $$0.591 V$$  at $${25^ \circ }C.$$ The equilibrium constant of the reaction is $$\left( {F = 96500\,C\,mo{l^{ - 1}};R = 8.314\,J{K^{ - 1}}\,mo{l^{ - 1}}} \right)$$

A. 1.0 × 1010
B. 1.0 × 105
C. 1.0 × 101
D. 1.0 × 1030
Answer :   1.0 × 1010
Discuss Question

109. $${\Delta _r}{G^ \circ }$$  for the cell with the cell reaction : $$Z{n_{\left( s \right)}} + A{g_2}{O_{\left( s \right)}} + {H_2}{O_{\left( l \right)}} \to $$       $$Zn_{\left( {aq} \right)}^{2 + } + 2A{g_{\left( s \right)}} + 2OH_{\left( {aq} \right)}^ - $$
$$\left[ {E_{\frac{{A{g_2}O}}{{Ag}}}^ \circ = 0.344\,V,E_{\frac{{Z{n^{2 + }}}}{{Zn}}}^ \circ = - 0.76\,V} \right]$$

A. $$2.13 \times {10^5}\,J\,mo{l^{ - 1}}$$
B. $$ - 2.13 \times {10^5}\,J\,mo{l^{ - 1}}$$
C. $$1.06 \times {10^5}\,J\,mo{l^{ - 1}}$$
D. $$ - 1.06 \times {10^5}\,J\,mo{l^{ - 1}}$$
Answer :   $$ - 2.13 \times {10^5}\,J\,mo{l^{ - 1}}$$
Discuss Question

110. The equivalent conductances of $$B{a^{2 + }}$$  and $$C{l^ - }$$  are $$127$$  and $$76\,{\Omega ^{ - 1}}\,c{m^{ - 1}}\,e{q^{ - 1}}$$    respectively at infinite dilution. The equivalent conductance of $$BaC{l_2}$$  at infinite dilution will be

A. 139.52
B. 203
C. 279
D. 101.5
Answer :   139.52
Discuss Question