1. Let $$P,\,Q,\,R$$   and $$S$$ be the points on the plane with position vectors $$ - 2\hat i - \hat j,\,4\hat i,\,3\hat i + 3\hat j$$     and $$ - 3\hat i + 2\hat j$$  respectively, The quadrilateral $$PQRS$$   must be a :

A. parallelogram, which is neither a rhombus nor a rectangle
B. square
C. rectangle, but not a square
D. rhombus, but not a square
Answer :   parallelogram, which is neither a rhombus nor a rectangle
Discuss Question

2. The projections of a vector on the three coordinate axis are $$6,\,- 3,\, 2$$   respectively. The direction cosines of the vector are :

A. $$\frac{6}{5},\,\frac{{ - 3}}{5},\,\frac{2}{5}$$
B. $$\frac{6}{7},\,\frac{{ - 3}}{7},\,\frac{2}{7}$$
C. $$\frac{{ - 6}}{7},\,\frac{{ - 3}}{7},\,\frac{2}{7}$$
D. $$6,\, - 3,\,2$$
Answer :   $$\frac{6}{7},\,\frac{{ - 3}}{7},\,\frac{2}{7}$$
Discuss Question

3. If $$\overrightarrow a $$ and $$\overrightarrow b $$ are two vectors of magnitude $$2$$ inclined at an angle $${60^ \circ }$$  then the angle between $$\overrightarrow a $$ and $$\overrightarrow a + \overrightarrow b $$  is :

A. $${30^ \circ }$$
B. $${60^ \circ }$$
C. $${45^ \circ }$$
D. none of these
Answer :   $${30^ \circ }$$
Discuss Question

4. Let $$\overrightarrow a = 2\overrightarrow i - \overrightarrow j + \overrightarrow k ,\,\overrightarrow b = \overrightarrow i + 2\overrightarrow j - \overrightarrow k $$        and $$\overrightarrow c = \overrightarrow i + \overrightarrow j - 2\overrightarrow k .$$     A vector in the plane of $$\overrightarrow b $$ and $$\overrightarrow c $$ whose projection on $$\overrightarrow a $$ has the magnitude $$\sqrt {\frac{2}{3}} $$ is :

A. $$2\overrightarrow i + 3\overrightarrow j - 3\overrightarrow k $$
B. $$2\overrightarrow i + 3\overrightarrow j + 3\overrightarrow k $$
C. $$ - 2\overrightarrow i - \overrightarrow j + 5\overrightarrow k $$
D. $$2\overrightarrow i + \overrightarrow j + 5\overrightarrow k $$
Answer :   $$ - 2\overrightarrow i - \overrightarrow j + 5\overrightarrow k $$
Discuss Question

5. Two system of rectangular axes have the same origin. If a plane cuts them at distances $$a,\,b,\,c$$   and $$a',\,b',\,c'$$   from the origin then :

A. $$\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} - \frac{1}{{a{'^2}}} - \frac{1}{{b{'^2}}} - \frac{1}{{c{'^2}}} = 0$$
B. $$\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} + \frac{1}{{a{'^2}}} + \frac{1}{{b{'^2}}} + \frac{1}{{c{'^2}}} = 0$$
C. $$\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} - \frac{1}{{{c^2}}} + \frac{1}{{a{'^2}}} + \frac{1}{{b{'^2}}} - \frac{1}{{c{'^2}}} = 0$$
D. $$\frac{1}{{{a^2}}} - \frac{1}{{{b^2}}} - \frac{1}{{{c^2}}} + \frac{1}{{a{'^2}}} - \frac{1}{{b{'^2}}} - \frac{1}{{c{'^2}}} = 0$$
Answer :   $$\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} - \frac{1}{{a{'^2}}} - \frac{1}{{b{'^2}}} - \frac{1}{{c{'^2}}} = 0$$
Discuss Question

6. If \[\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \]   are noncoplanar nonzero vectors then \[\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow a \times \overrightarrow c } \right) + \left( {\overrightarrow b \times \overrightarrow c } \right) \times \left( {\overrightarrow b \times \overrightarrow a } \right) + \left( {\overrightarrow c \times \overrightarrow a } \right) \times \left( {\overrightarrow c \times \overrightarrow b } \right)\]               is equal to :

A. \[{\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]^2}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)\]
B. \[\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)\]
C. \[\overrightarrow 0 \]
D. none of these
Answer :   \[\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)\]
Discuss Question

7. Let $$\vec p$$ and $$\vec q$$ be the position vectors of $$P$$ and $$Q$$ respectively, with respect to $$O$$ and $$\left| {\vec p} \right| = p,\,\left| {\vec q} \right| = q.$$    The points $$R$$ and $$S$$ divide $$PQ$$  internally and externally in the ratio 2 : 3 respectively. If $$OR$$  and $$OS$$  are perpendicular then :

A. $$9{p^2} = 4{q^2}$$
B. $$4{p^2} = 9{q^2}$$
C. $$9p = 4q$$
D. $$4p = 9q$$
Answer :   $$9{p^2} = 4{q^2}$$
Discuss Question

8. Let $$\vec \alpha = 3\hat i + \hat j$$   and $$\vec \beta = 2\hat i - \hat j + 3\hat k.$$
If $$\vec \beta = {{\vec \beta }_1} - {{\vec \beta }_2},$$   where $${{\vec \beta }_1}$$ is parallel to $${\vec \alpha }$$ and $${{\vec \beta }_2}$$ is perpendicular to $${\vec \alpha },$$ then $${{\vec \beta }_1} \times {{\vec \beta }_2}$$   is equal to :

A. $$ - 3\hat i + 9\hat j + 5\hat k$$
B. $$3\hat i - 9\hat j - 5\hat k$$
C. $$\frac{1}{2}\left( { - 3\hat i + 9\hat j + 5\hat k} \right)$$
D. $$\frac{1}{2}\left( {3\hat i - 9\hat j + 5\hat k} \right)$$
Answer :   $$\frac{1}{2}\left( { - 3\hat i + 9\hat j + 5\hat k} \right)$$
Discuss Question

9. Let $$A = \left( {1,\,2,\,2} \right),\,B = \left( {2,\,3,\,6} \right)$$      and $$C = \left( {3,\,4,\,12} \right).$$    The direction cosines of a line equally inclined with $$OA,\,OB$$   and $$OC$$  where $$O$$ is the origin, are :

A. $$\frac{1}{{\sqrt 2 }},\,\frac{{ - 1}}{{\sqrt 2 }},\,0$$
B. $$\frac{1}{{\sqrt 2 }},\,\frac{1}{{\sqrt 2 }},\,0$$
C. $$\frac{1}{{\sqrt 3 }},\, - \frac{1}{{\sqrt 3 }},\,\frac{1}{{\sqrt 3 }}$$
D. $$\frac{1}{{\sqrt 3 }},\, - \frac{1}{{\sqrt 3 }},\, - \frac{1}{{\sqrt 3 }}$$
Answer :   $$\frac{1}{{\sqrt 3 }},\, - \frac{1}{{\sqrt 3 }},\, - \frac{1}{{\sqrt 3 }}$$
Discuss Question

10. Let $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   be three unit vectors and $$\overrightarrow a .\overrightarrow b = \overrightarrow a .\overrightarrow c = 0.$$    If the angle between $$\overrightarrow b $$ and $$\overrightarrow c $$ is $$\frac{\pi }{3}$$ then $$\left| {\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]} \right|$$   is equal to :

A. $$\frac{{\sqrt 3 }}{2}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. none of these
Answer :   $$\frac{{\sqrt 3 }}{2}$$
Discuss Question