1. The rate of a first order reaction is \[1.5\times {{10}^{-2}}mol\,{{L}^{-1}}{{\min }^{-1}}\]     at $$0.5\,M$$  concentration of the reactant. The half life of the reaction is

A. $$0.383\,\min $$
B. $$23.1\,\min $$
C. $$8.73\,\min $$
D. $$7.53\,\min $$
Answer :   $$23.1\,\min $$
Discuss Question

2. Consider the following statements :
(i) Increase in concentration of reactant increases the rate of a zero order reaction.
(ii) Rate constant $$k$$  is equal to collision frequency $$A$$ if $${E_a} = 0.$$
(iii) Rate constant $$k$$  is equal to collision frequency $$A$$ if $${E_a} = \infty .$$
(iv) $${\text{ln}}\,k\,\,{\text{vs}}\,\,T$$   is a straight line.
(v) $${\text{In}}\,k\,\,{\text{vs}}\,\,\frac{1}{T}$$   is a straight line.
Correct statements areCorrect statements are

A. (i) and (iv)
B. (ii) and (v)
C. (iii) and (iv)
D. (ii) and (iii)
Answer :   (ii) and (v)
Discuss Question

3. Which of the following factors are responsible for the increase in the rate of a surface catalysed reaction?
(i) A catalyst provides proper orientation for the reactant molecules to react.
(ii) Heat of adsorption of reactants on a catalyst helps reactant molecules to overcome activation energy.
(iii) The catalyst increases the activation energy of the reaction.

A. (i) and (iii)
B. (i) and (ii)
C. (ii) and (iii)
D. (i), (ii) and (iii)
Answer :   (i) and (ii)
Discuss Question

4. For a first order reaction, the ratio of the time take for $${\frac{7}{8}^{th}}$$  of the reaction to complete to that of half of the reaction to complete is

A. 3 : 1
B. 1: 3
C. 2 : 3
D. 3 : 2
Answer :   3 : 1
Discuss Question

5. A positron is emitted from $$_{11}^{23}Na.$$ The ratio of the atomic mass and atomic number of the resulting nuclide is

A. $$\frac{{22}}{{10}}$$
B. $$\frac{{22}}{{11}}$$
C. $$\frac{{23}}{{10}}$$
D. $$\frac{{23}}{{12}}$$
Answer :   $$\frac{{23}}{{10}}$$
Discuss Question

6. The reaction $$A \to B$$   follows first order kinetics. The time taken for $$0.8\,mole$$  of $$A$$ to produce $$0.6\,mole$$  of $$B$$  is 1 hour. What is the time taken for conversion of $$0.9\,mole$$  of $$A$$ to produce $$0.675\,mole$$   of $$B?$$

A. 2 hours
B. 1 hour
C. 0.5 hour
D. 0.25 hour
Answer :   1 hour
Discuss Question

7. A reaction takes place in various steps. The rate constant for first, second, third and fifth steps are $${k_1},{k_2},{k_3}$$   and $${k_5}$$  respectively. The overall rate constant is given by $$k = \frac{{{k_2}}}{{{k_3}}}{\left( {\frac{{{k_1}}}{{{k_5}}}} \right)^{\frac{1}{2}}}$$   If activation energy are 40, 60, 50 and $$10\,kJ/mol$$   respectively, the overall energy of activation $$\left( {kJ/mol} \right)$$  is :

A. 10
B. 20
C. 25
D. none of these
Answer :   25
Discuss Question

8. For a first order reaction, a plot of $${\text{log}}\left( {a - x} \right)$$   against time is a straight line with a negative slope equal to

A. $$\frac{{ - k}}{{2.303}}$$
B. $$ - 2.303\,k$$
C. $$\frac{{2.303}}{k}$$
D. $$ - \frac{{{E_a}}}{{2.303\,R}}$$
Answer :   $$\frac{{ - k}}{{2.303}}$$
Discuss Question

9. What will be the rate equation for the reaction $$2X + Y \to Z,$$   if the order of the reaction is zero?

A. $${\text{Rate}} = k\left[ X \right]\left[ Y \right]$$
B. $${\text{Rate}} = k$$
C. $${\text{Rate}} = k{\left[ X \right]^0}\left[ Y \right]$$
D. $${\text{Rate}} = k\left[ X \right]{\left[ Y \right]^0}$$
Answer :   $${\text{Rate}} = k$$
Discuss Question

10. The differential rate law for the reaction $${H_2}\left( g \right) + {I_2}\left( g \right) \to 2HI\left( g \right)$$      is

A. $$ - \frac{{d\left[ {{H_2}} \right]}}{{dt}} = - \frac{{d\left[ {{I_2}} \right]}}{{dt}} = - \frac{{d\left[ {HI} \right]}}{{dt}}$$
B. $$ - \frac{{d\left[ {{H_2}} \right]}}{{dt}} = - \frac{{d\left[ {{I_2}} \right]}}{{dt}} = \frac{1}{2}\frac{{d\left[ {HI} \right]}}{{dt}}$$
C. $$\frac{1}{2}\frac{{d\left[ {{H_2}} \right]}}{{dt}} = \frac{1}{2}\frac{{d\left[ {{I_2}} \right]}}{{dt}} = - \frac{{d\left[ {HI} \right]}}{{dt}}$$
D. $$ - 2\frac{{d\left[ {{H_2}} \right]}}{{dt}} = - 2\frac{{d\left[ {{I_2}} \right]}}{{dt}} = \frac{{d\left[ {HI} \right]}}{{dt}}$$
Answer :   $$ - 2\frac{{d\left[ {{H_2}} \right]}}{{dt}} = - 2\frac{{d\left[ {{I_2}} \right]}}{{dt}} = \frac{{d\left[ {HI} \right]}}{{dt}}$$
Discuss Question